Polyaniline nanofibers: a unique polymer nanostructure for versatile applications.
نویسندگان
چکیده
Known for more than 150 years, polyaniline is the oldest and potentially one of the most useful conducting polymers because of its facile synthesis, environmental stability, and simple acid/base doping/dedoping chemistry. Because a nanoform of this polymer could offer new properties or enhanced performance, nanostructured polyaniline has attracted a great deal of interest during the past few years. This Account summarizes our recent research on the syntheses, processing, properties, and applications of polyaniline nanofibers. By monitoring the nucleation behavior of polyaniline, we demonstrate that high-quality nanofibers can be readily produced in bulk quantity using the conventional chemical oxidative polymerization of aniline. The polyaniline nanostructures formed using this simple method have led to a number of exciting discoveries. For example, we can readily prepare aqueous polyaniline colloids by purifying polyaniline nanofibers and controlling the pH. The colloids formed are self-stabilized via electrostatic repulsions without the need for any chemical modification or steric stabilizer, thus providing a simple and environmentally friendly way to process this polymer. An unusual nanoscale photothermal effect called "flash welding", which we discovered with polyaniline nanofibers, has led to the development of new techniques for making asymmetric polymer membranes and patterned nanofiber films and creating polymer-based nanocomposites. We also demonstrate the use of flash-welded polyaniline films for monolithic actuators. Taking advantage of the unique reduction/oxidation chemistry of polyaniline, we can decorate polyaniline nanofibers with metal nanoparticles through in situ reduction of selected metal salts. The resulting polyaniline/metal nanoparticle composites show promise for use in ultrafast nonvolatile memory devices and for chemical catalysis. In addition, the use of polyaniline nanofibers or their composites can significantly enhance the sensitivity, selectivity, and response time of polyaniline-based chemical sensors. By combining straightforward synthesis and composite formation with exceptional solution processability, we have developed a range of new useful functionalities. Further research on nanostructured conjugated polymers holds promise for even more exciting discoveries and intriguing applications.
منابع مشابه
Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance
A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomp...
متن کاملVersatile solution for growing thin films of conducting polymers.
The method employed for depositing nanostructures of conducting polymers dictates potential uses in a variety of applications such as organic solar cells, light-emitting diodes, electrochromics, and sensors. A simple and scalable film fabrication technique that allows reproducible control of thickness, and morphological homogeneity at the nanoscale, is an attractive option for industrial applic...
متن کاملCatalytically Graphitized Electrospun Carbon Nanofibers Adorned with Nickel Nanoparticles for Catalysis Applications
Catalytically graphitized electrospun carbon nanofibers adorned uniformly with fine nickel nanoparticles were successfully prepared. The procedure was based on the electrospinning technique and the use of nickel precursor to create both graphitized nanofibers and nickel nanoparticles under a relatively low-temperature heat treatment. The X-ray diffraction and Raman results clearly proved cataly...
متن کاملFibrillar Growth in Polyaniline
Chemical oxidative polymerization of aniline in dilute aqueous acids using an ammonium peroxydisulfate oxidant proceeds via the intermediacy of large, colorless aggregates that act as ‘seeds’ in orchestrating the overall morphology of the product polyaniline. Observed for the first time by continuously monitoring the polymerization by static and dynamic light-scattering (LS) measurements, these...
متن کاملSynthesis, swift heavy ion irradiation and characterization of conducting polymer based nanostructured materials for biomedical and sensor applications
The path-breaking discovery of high conductivity in polyacetylene in 1977 by A. J. Heeger, A. G. MacDiarmid and H. Shirakawa opened up a whole new field of research, which won them the Noble prize in the year 2000. Since then the field of conducting polymers has undergone tremendous developments and a wide range of commercial applications have evolved. Conducting polymers have found application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Accounts of chemical research
دوره 42 1 شماره
صفحات -
تاریخ انتشار 2009